(06 Marks) (02 Marks) (10 Marks) ## USN ## First Semester MCA Degree Examination, June/July 2016 ## **Fundamentals of Computer Organization** | Time: 3 hrs. Max. Marks: 1 | | | | | | |-----------------------------|---|--|--|--|--| | | | | Note: Answer any FIVE full questions. | | | | | 1 | a. | Perform the following Number Base Conversion
i) $(623.77)_8 = ()_2$
ii) $(FAFA)_{16} = ()_8$ | | | | | | b. | iii) $111110101110.11_2 = ()_{16}$
iv) $(1101011)_2 = ()_{10}$
v) $(8971)_{10} = ()_{16}$
Perform the following subtraction
$(1001)_2 - (110101)_2$ using | (10 Marks) | | | | | c. | i) 1's complementii) 2's complement.What is a Binary code? Explain the Error-Detection codes with example. | (05 Marks)
(05 Marks) | | | | 2 | a.
b. | State and prove any four theorems in Boolean Algebra.
Simplify the following Boolean function using Karnaugh map.
F (A, B, C, D) = $\Sigma(3, 7, 11, 13, 14, 15)$
Draw Logic diagram to implement the Boolean expression given below: | (08 Marks)
(06 Marks) | | | | • | | $F = x \overline{y} z + \overline{x} \overline{y} z + \overline{w} x y$ | (06 Marks) | | | | 3 | a.
b. | Why NAND and NOR are called universal gates? Implement the three Basic and NAND. Design a full substractor with truth table and Logical expressions. | (08 Marks)
(12 Marks) | | | | 4 | a.b.c. | What is Flip-Flop? Describe the working of a Basic Flip-Flop circuit with a Diagram Define a Register. What is it made of? What is a shift Register? Give an account on the serial transfer in a shift register. | (08 Marks)
(02 Marks) | | | | 5 | a.
b. | Discuss in detail the functional units of digital computers. What are the four types of operations performed by a digital computer? Desoperation with suitable Assembly level instructions. | (10 Marks) | | | | 6 | a. | What is an addressing mode? Discuss any four types of addressing modes with ex | amples. (10 Marks) | | | | | b.
c. | Explain Big and little endian assignments. Write and explain any four Assembler directives. | (06 Marks)
(04 Marks) | | | | 7 | a.
b. | What is an interrupt? Describe the implementation of interrupt priority with diagram. Give an account on Direct Memory Access (DMA) controller with a diagram. | a suitable
(10 Marks)
(10 Marks) | | | | 8 | a. | What is a ROM? | (02 Marks) | | What is a flash memory? To which type of ROM a flash memory belong to? Discuss in detail the different types of ROM. Describe the set associative mapping in a cache memory.